If it's not what You are looking for type in the equation solver your own equation and let us solve it.
4y+12y^2=0
a = 12; b = 4; c = 0;
Δ = b2-4ac
Δ = 42-4·12·0
Δ = 16
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:$y_{1}=\frac{-b-\sqrt{\Delta}}{2a}$$y_{2}=\frac{-b+\sqrt{\Delta}}{2a}$$\sqrt{\Delta}=\sqrt{16}=4$$y_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(4)-4}{2*12}=\frac{-8}{24} =-1/3 $$y_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(4)+4}{2*12}=\frac{0}{24} =0 $
| 2t+(-16)=10 | | 20*(-2)+(-20)=x | | 12(g+1)=6(3g+3) | | x-5/5=3/10 | | 14–(2a+5)=-2a+9 | | 12g(g+1)=6(3g+3) | | 40x-20=50x-10 | | 5y^2-14y-24=0 | | 5(4n-4)=(-60) | | (x+7/14)=1-(3/7x) | | (x+7/14)=1-(3/7)x | | 9x3-12x+6=11x-14x+7 | | 1/4t=-2.5 | | x2−64=0 | | -p+49=-5p-15 | | x=3x^2+x-2 | | 4×(n+3)=32 | | 4=50x+25 | | 9y=5y+2 | | 8-2(3y-5)+9y=7(y-2) | | 15+2x=5+2x | | 8.25t+6=19.5t+15 | | 1/3(x-1/2)=2x+11/2 | | 0.7(6−0.3x)=−2.1 | | 8(2x+9)8=56 | | -12=w-9 | | 10=2y+16 | | t/6=19/16 | | 17x+7=45 | | 1x+7/10x=1+4/6 | | 4r+21=r-8(4-7r) | | 12x-4=10x+22 |